The stated purpose of granting
patents is to provide an incentive for inventors to innovate and to share their
innovations with the public. And as with
all public policy it is fair to ask the question: Does patent policy actually influence the
behavior of inventors? It turns out this
is a tough question to answer. While the
anecdotal evidence suggests that patents are doing their job, a truly rigorous
study of the question is hindered by two problems.
The first problem is that you
really can’t measure behavior statistically.
You can only measure changes in behavior and changes in behavior have to
be driven by changes in policy. And since US patent law and
policy has been pretty stable since the 1950’s there are only a limited number
of changes available for study.
The second problem is that once
you have a policy change one still has to be able to separate the behavior change caused by the policy from other societal factors that may drive changes in behavior. Patent policy isn’t the only factor that
drives inventive activity. The number of
patents granted will be influenced by economic activity, education and income
levels as well as host of other potential factors.
In 2010, David Abrams attempted
to measure if patent policy can impact innovator behavior. And in Did TRIPS Spur
Innovation? An Empirical Analysis of Patent Duration and Incentives to Innovate he appears to
have found an answer (yes).
For the change to the system, Abrams
chose the 1995 implementation of the TRIPS agreement which was part of the GATT
approval. Specifically, in the TRIPS agreement the US agreed to change the
patent term from 17 years after the patent issue date to 20 years after the
patent application date.
Once Abrams chose the change, his
next problem was to isolate the change from other societal factors. What Abrams did was to use a “difference in
differences” methodology. Abrams
described this methodology using an example.
Assume that bankruptcy laws were relaxed significantly for people who
earn less than $150,000 per year but not for people who earn over that
amount. Then if, after passage, there is
a 10% increase in the rates of bankruptcy the initial conclusion might be that
the law increased bankruptcies. What Abrams points out is that there is a way to
test this conclusion: compare bankruptcy
rates for people who earn less than $150,000 with those who earn more than
$150,000. His argument is that if the
bankruptcy rates between the two groups both increased by 10%, then the law
probably had no impact. Conversely, if
there is a significant difference in the increases between the two groups, then
the law probably had a significant impact.
Abrams took advantage of the fact
that the TRIPS increase in the patent term would be offset by the processing
time the USPTO took to approve the patent.
Because these processing times vary by patent classification code,
Abrams reasoned that if inventors were rationally influenced by the change in
term, he would see more applications in patent classes that had shorter application
processing times compared to those with longer processing times. And, after analyzing over 800,000 patents, this
is exactly what he found.
It doesn’t look like this
increase in patent quantity came from a reduction in quality. Abrams compared forward citations, (a typical
quality measure for patents) for patent applications made before and after the
term change and found no significant difference. Unfortunately, since Abrams was measuring
differences instead of absolutes there is no way to quantify an absolute increase
in applications from this study.
To be fair, the value of an
empirical study with this result is limited.
What makes this study worth noting is that by demonstrating that
inventors and innovation can be influenced by patent policy, Abrams created a
methodology that allows future researchers to separate the impact of patent
policy from other societal factors. What
they will discover only time can tell.
Below
is a summary of selected patents that have been recently issued in textile
related classification codes:
Sun protective
neckwear garment: An ultraviolet protective garment to protect
the user's neck, chest, upper back, chin, and portions of the shoulders. The
neckwear garment is a single body tubular unit, with a ship decanter shape. The neckwear garment is manufactured from
flexible, elasticized, fabric with ultraviolet blocking capability. Patent: 8689362. Inventor:
Lavin. Not Assigned
Glove and method for
producing the same: A
glove having excellent moisture permeability and abrasion resistance of a back
portion, and does not trap heat or retain moisture. A glove has a coating layer of rubber containing air bubbles
formed on the back portion of the glove.
The moisture permeability of the coating layer ranges from 1000 to 9000
g/m2·24 hrs. Patent: 8689363. Inventors:
Kishihara and Ii. Assignee: Showa Glove Co.
Belt adjustment system: A heavy duty belt adjustment system that permit a continuum or
larger selection of belt loop sizes..
Patent: 8689364. Inventors:
Rowland and Hunsucker. Not
Assigned.
Fabric having
ultraviolet radiation protection: A method for treating a fabric for protection
from ultraviolet radiation. The method
comprises washing the fabric in a washing machine with a suspension of zinc
oxide particles treated with an acid polymer.
This binds the zinc oxide to the fabric.
Patent: 8690964. Inventors:
Kramer, et.al. Assignee: The Sweet Living
Group, LLC
Paper finishing
process: A process for applying a finishing paper
material on a leather or woven support material is described, comprising the
steps of: first buttering of glue on a surface of the support material,
positioning the finishing material on said support material, ironing, perching,
second buttering of glue, and a finishing step.
Patent: 8690965. Inventor:
Magrin and Pellizzari.
Assignee: G
& G S.R.L. (Societa Unipersonale)
Tobacco plant derived
dye and process of making the same: A dye and process to make a dye produced from
tobacco plant materials In a preferred embodiment, the tobacco plants are
organically grown and the stems and leaves of the plants are utilized to
produce the dye. The process percolates a hot enzyme solution onto ground plant
materials to produce tobacco plant fiber and the dye. The dye can be produced
in many colors, does not require a mordant to bind and does not produce waste.. Patent:
8690966. Inventor:
Devall. Assignee: PBO, Inc.
High tear strength
flame resistant cotton fabric: An affordable flame resistant cotton fabric
with better tear strength. The 100% cotton yarn is produced using a combination
of compact spinning technology and gassing and/or singeing process performed in
tandem. The yarn is turned into fabric through
normal processes. A flame retardant is
applied with appropriate finishing chemicals.
Patent: 8689413. Inventor:
Ramaswami. Not Assigned.
Jim Carson is a principal of RB Consulting, Inc. and
a registered patent agent. He has over
30 years of experience across multiple industries including the biotechnology,
textile, computer, telecommunications, and energy sectors. RB Consulting, Inc. specializes in providing
management, prototyping, and regulatory services to small and start-up
businesses. He can be reached via email
at James.Carson.Jr@gmail.com
or by phone at (803) 792-2183.
No comments:
Post a Comment